Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-Dichloroacetyl-*r*-2,*c*-6-bis(4-methoxy-phenyl)-*t*-3,*t*-5-dimethylpiperidin-4-one

K. Ravichandran,^a P. Ramesh,^a C. Neeladevi,^b S. Ponnuswamy^b and M. N. Ponnuswamy^a*

^aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ^bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India Correspondence e-mail: mnpsy2004@yahoo.com

Received 17 December 2009; accepted 19 December 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.046; wR factor = 0.123; data-to-parameter ratio = 19.5.

In the title compound, $C_{23}H_{25}Cl_2NO_4$, the piperidine ring adopts a distorted boat conformation. The dihedral angle between the benzene rings is 54.8 (1)°. In the crystal, the molecules are linked into a two-dimensional network parallel to the *ab* plane by $C-H \cdots O$ hydrogen bonds.

Related literature

For the biological properties of piperidin-4-one compounds, see: El-Subbagh *et al.* (2000); Jerom & Spencer (1988); Perumal *et al.* (2001); Hagenbach & Gysin (1952); Mobio *et al.* (1989); Katritzky & Fan (1990); Ganellin & Spickett (1965). For ring puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).

Experimental

b = 9.9702 (9) Å
c = 27.649 (2) Å
$\beta = 92.265 \ (5)^{\circ}$
V = 2238.0 (3) Å ³

Z = 4Mo $K\alpha$ radiation $\mu = 0.32 \text{ mm}^{-1}$

Data collection

Bruker SMART APEXII area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\min} = 0.917, T_{\max} = 0.929$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.123$ S = 1.035379 reflections

276 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.27$ e Å $^{-3}$ $\Delta \rho_{min} = -0.36$ e Å $^{-3}$

Table I			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2 - H2 \cdots O3^{i}$ $C5 - H5 \cdots O1^{ii}$	0.98 0.98	2.40 2.59	3.326 (2) 3.408 (2)	158 141
		1	1 1	

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

KR thanks the GNR X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the management of Kandaswami Kandar's College, Velur, Namakkal, Tamil Nadu, India, for the encouragement to pursue the programme.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2992).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- El-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-obaid, A. M. (2000). J. Med. Chem. 43, 2915–2921.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Ganellin, C. R. & Spickett, R. G. W. (1965). J. Med. Chem. 8, 619-625.
- Hagenbach, R. E. & Gysin, H. (1952). Experientia, 8, 184-185.
- Jerom, B. R. & Spencer, K. H. (1988). Eur. Patent Appl. EP 277794.
- Katritzky, A. R. & Fan, W. J. (1990). J. Org. Chem. 55, 3205-3209.
- Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenku, E. E., Prostakov, N. S. & Andreeva, E. L. (1989). *Khim. Farm. Zh.* 23, 421–427.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Perumal, R. V., Adiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156–159.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

 $0.27 \times 0.26 \times 0.23 \text{ mm}$

19833 measured reflections 5379 independent reflections

3699 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.026$

Acta Cryst. (2010). E66, o263 [doi:10.1107/S1600536809054725]

1-Dichloroacetyl-r-2,c-6-bis(4-methoxyphenyl)-t-3,t-5-dimethylpiperidin-4-one

K. Ravichandran, P. Ramesh, C. Neeladevi, S. Ponnuswamy and M. N. Ponnuswamy

Comment

Piperidin-4-one derivatives possess varied biological properties such as antiviral, antitumour (El-Subbagh *et al.*, 2000), analgesic (Jerom & Spencer, 1988), local anaesthetic (Perumal *et al.*, 2001; Hagenbach & Gysin, 1952), antimicrobial, bactericidal, fungicidal, herbicidal, insecticidal, antihistaminic, anti-inflammatory, anticancer, *CNS* stimulant and depressant activities (Mobio *et al.*, 1989; Katritzky & Fan, 1990; Ganellin & Spickett, 1965). In view of these importance and to ascertain the molecular conformation, a crystallographic study of the title compound has been carried out.

The *ORTEP* diagram of the title compound is shown in Fig.1. The piperidine ring adopts a distorted boat conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: $q_2 = 0.737$ (2) Å, $q_3 = 0.013$ (2) Å, $\phi_2 = 285.4$ (1)° and Δ_s (C3 or C6) = 19.0 (2)°. The sum of the bond angles around the atom N1 (359.1°) of the piperidine ring is in accordance with sp^2 hybridization.

The crystal packing is stabilized by C—H···O intermolecular interactions. Atom C2 of the molecule at (x, y, z) donates a proton to atom O3 of the molecule at (1 - x, 1/2 + y, 1/2 - z), forming a C5 (Bernstein *et al.*, 1995) zigzag chain running along the *b* axis. The chains are cross linked *via* C5—H5···O1 intermolecular interactions, forming a two-dimensional network parallel to the *ab* plane.

Experimental

To a solution of r-2,c-6-bis(4-methoxyphenyl)-t-3,t-5-dimethylpiperidin-4-one (1.69 g) in anhydrous benzene (60 ml) was added triethylamine (2.08 ml) and dichloroacetylchloride (1.42 ml). The reaction mixture was allowed to stir at room temperature for 8 hr and the solution was washed with water (4×25 ml). The organic layer was dried over anhydrous sodium sulfate, passed through a short column of silica, evaporated and crystallized from benzene-petroleum ether (60–80° C) (9:1 v/v).

Refinement

H atoms were positioned geometrically (C-H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$ and 1.2 $U_{eq}(C)$.

Figures

Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Fig. 2. The crystal packing of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonding have been omitted for clarity.

1-Dichloroacetyl-r-2,c-6-bis(4-methoxyphenyl)- t-3,t-5-dimethylpiperidin-4-one

Crystal data

$C_{23}H_{25}Cl_2NO_4$	F(000) = 944
$M_r = 450.34$	$D_{\rm x} = 1.337 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2335 reflections
a = 8.1251 (7) Å	$\theta = 1.5 - 28.4^{\circ}$
b = 9.9702 (9) Å	$\mu = 0.32 \text{ mm}^{-1}$
c = 27.649 (2) Å	T = 293 K
$\beta = 92.265 (5)^{\circ}$	Block, colourless
$V = 2238.0 (3) \text{ Å}^3$	$0.27\times0.26\times0.23~mm$
Z = 4	

Data collection

Bruker SMART APEXII area-detector diffractometer	5379 independent reflections
Radiation source: fine-focus sealed tube	3699 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.026$
ω and φ scans	$\theta_{\text{max}} = 28.4^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2008)	$h = -8 \rightarrow 10$
$T_{\min} = 0.917, \ T_{\max} = 0.929$	$k = -13 \rightarrow 13$
19833 measured reflections	<i>l</i> = −36→36

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.046$	H-atom parameters constrained
$wR(F^2) = 0.123$	$w = 1/[\sigma^2(F_o^2) + (0.0497P)^2 + 0.6929P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
5379 reflections	$\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$
276 parameters	$\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(20)] ^{-1/4}
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.0028 (7)

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.25916 (8)	1.01921 (6)	0.20873 (3)	0.0839 (2)
C12	0.26208 (12)	0.94382 (8)	0.10863 (3)	0.1095 (3)
01	0.03043 (18)	0.80082 (15)	0.18222 (7)	0.0785 (5)
O2	0.7057 (2)	0.78446 (18)	0.00094 (6)	0.0835 (5)
03	0.42430 (17)	0.31447 (14)	0.24506 (5)	0.0588 (4)
O4	-0.1564 (2)	0.25273 (19)	0.03205 (6)	0.0880 (5)
N1	0.23306 (16)	0.64601 (13)	0.17753 (5)	0.0373 (3)
C2	0.41000 (18)	0.60777 (16)	0.17209 (6)	0.0347 (3)
H2	0.4747	0.6462	0.1994	0.042*
C3	0.42732 (19)	0.45310 (16)	0.17457 (6)	0.0375 (4)
Н3	0.3593	0.4165	0.1476	0.045*
C4	0.3566 (2)	0.40055 (17)	0.22066 (6)	0.0400 (4)
C5	0.1976 (2)	0.46357 (18)	0.23518 (6)	0.0429 (4)
Н5	0.1227	0.3916	0.2443	0.051*
C6	0.1163 (2)	0.54088 (17)	0.19306 (6)	0.0407 (4)
H6	0.0221	0.5882	0.2061	0.049*
C7	0.1748 (2)	0.77330 (18)	0.17704 (7)	0.0466 (4)
C8	0.2948 (2)	0.88677 (18)	0.16834 (7)	0.0536 (5)
H8	0.4082	0.8544	0.1731	0.064*
C9	0.48157 (19)	0.65819 (16)	0.12568 (6)	0.0367 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C10	0.4080 (2)	0.63098 (19)	0.08098 (6)	0.0451 (4)
H10	0.3086	0.5846	0.0793	0.054*
C11	0.4787 (2)	0.6711 (2)	0.03850 (7)	0.0530 (5)
H11	0.4274	0.6514	0.0087	0.064*
C12	0.6256 (3)	0.7404 (2)	0.04089 (8)	0.0563 (5)
C13	0.7005 (2)	0.76910 (19)	0.08502 (8)	0.0561 (5)
H13	0.7992	0.8165	0.0866	0.067*
C14	0.6297 (2)	0.72769 (18)	0.12718 (7)	0.0471 (4)
H14	0.6821	0.7467	0.1569	0.056*
C15	0.6402 (4)	0.7474 (3)	-0.04496 (10)	0.1007 (10)
H15A	0.6237	0.6521	-0.0460	0.151*
H15B	0.7155	0.7728	-0.0693	0.151*
H15C	0.5368	0.7921	-0.0510	0.151*
C16	0.6029 (2)	0.4058 (2)	0.16746 (8)	0.0572 (5)
H16A	0.6762	0.4496	0.1905	0.086*
H16B	0.6341	0.4276	0.1353	0.086*
H16C	0.6091	0.3105	0.1721	0.086*
C17	0.2310 (3)	0.5525 (2)	0.27953 (7)	0.0608 (5)
H17A	0.2733	0.4986	0.3060	0.091*
H17B	0.1304	0.5947	0.2884	0.091*
H17C	0.3103	0.6200	0.2721	0.091*
C18	0.04865 (18)	0.45810 (17)	0.15056 (6)	0.0401 (4)
C19	0.0299 (2)	0.32074 (18)	0.15241 (7)	0.0477 (4)
H19	0.0635	0.2754	0.1805	0.057*
C20	-0.0373 (2)	0.2483 (2)	0.11393 (7)	0.0546 (5)
H20	-0.0482	0.1557	0.1162	0.066*
C21	-0.0879 (2)	0.3135 (2)	0.07232 (7)	0.0572 (5)
C22	-0.0711 (2)	0.4514 (2)	0.06939 (7)	0.0582 (5)
H22	-0.1049	0.4963	0.0412	0.070*
C23	-0.0045 (2)	0.5217 (2)	0.10811 (7)	0.0489 (4)
H23	0.0053	0.6144	0.1058	0.059*
C24	-0.1684 (5)	0.1120 (3)	0.03207 (13)	0.1282 (14)
H24A	-0.0602	0.0738	0.0357	0.192*
H24B	-0.2197	0.0825	0.0021	0.192*
H24C	-0.2335	0.0838	0.0584	0.192*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0931 (5)	0.0454 (3)	0.1115 (5)	0.0192 (3)	-0.0188 (4)	-0.0273 (3)
Cl2	0.1680 (8)	0.0806 (5)	0.0815 (5)	0.0454 (5)	0.0254 (5)	0.0328 (4)
01	0.0488 (8)	0.0526 (9)	0.1349 (15)	0.0178 (7)	0.0149 (9)	-0.0099 (9)
O2	0.0905 (12)	0.0833 (12)	0.0795 (11)	-0.0124 (10)	0.0404 (9)	0.0208 (9)
O3	0.0665 (9)	0.0521 (8)	0.0577 (8)	0.0080 (7)	0.0027 (7)	0.0194 (7)
O4	0.0982 (13)	0.0853 (12)	0.0777 (11)	0.0069 (10)	-0.0324 (9)	-0.0231 (9)
N1	0.0331 (7)	0.0329 (7)	0.0461 (7)	0.0036 (6)	0.0056 (6)	-0.0005 (6)
C2	0.0295 (8)	0.0346 (8)	0.0400 (8)	0.0026 (7)	0.0028 (6)	-0.0002 (7)
C3	0.0368 (8)	0.0347 (8)	0.0411 (8)	0.0054 (7)	0.0052 (6)	0.0028 (7)

C4	0.0446 (9)	0.0355 (9)	0.0399 (8)	-0.0032 (8)	-0.0004 (7)	0.0005 (7)
C5	0.0448 (9)	0.0443 (10)	0.0403 (9)	-0.0049 (8)	0.0108 (7)	0.0001 (8)
C6	0.0327 (8)	0.0413 (9)	0.0489 (9)	0.0009 (7)	0.0107 (7)	-0.0014 (8)
C7	0.0437 (10)	0.0386 (9)	0.0574 (10)	0.0089 (8)	0.0025 (8)	-0.0050 (8)
C8	0.0599 (12)	0.0335 (9)	0.0675 (12)	0.0111 (9)	0.0015 (9)	0.0006 (9)
C9	0.0332 (8)	0.0314 (8)	0.0457 (9)	0.0030 (7)	0.0047 (7)	0.0042 (7)
C10	0.0386 (9)	0.0488 (10)	0.0484 (9)	-0.0037 (8)	0.0052 (7)	0.0056 (8)
C11	0.0550 (11)	0.0589 (12)	0.0455 (10)	0.0019 (10)	0.0078 (8)	0.0089 (9)
C12	0.0575 (12)	0.0486 (11)	0.0645 (12)	0.0050 (10)	0.0234 (10)	0.0158 (10)
C13	0.0415 (10)	0.0453 (11)	0.0824 (14)	-0.0057 (9)	0.0143 (10)	0.0102 (10)
C14	0.0397 (9)	0.0403 (9)	0.0612 (11)	-0.0019 (8)	0.0021 (8)	0.0049 (8)
C15	0.132 (3)	0.105 (2)	0.0691 (17)	0.0001 (19)	0.0486 (17)	0.0209 (16)
C16	0.0496 (11)	0.0542 (11)	0.0691 (12)	0.0199 (9)	0.0174 (9)	0.0149 (10)
C17	0.0735 (14)	0.0637 (13)	0.0459 (10)	0.0017 (11)	0.0100 (9)	-0.0107 (9)
C18	0.0269 (8)	0.0437 (9)	0.0500 (9)	0.0019 (7)	0.0051 (7)	0.0009 (8)
C19	0.0434 (10)	0.0448 (10)	0.0549 (10)	0.0009 (8)	-0.0001 (8)	0.0033 (8)
C20	0.0490 (11)	0.0443 (10)	0.0701 (13)	0.0017 (9)	-0.0040 (9)	-0.0066 (10)
C21	0.0456 (11)	0.0642 (13)	0.0613 (12)	0.0067 (10)	-0.0060 (9)	-0.0129 (10)
C22	0.0495 (11)	0.0697 (14)	0.0545 (11)	0.0055 (10)	-0.0087 (9)	0.0068 (10)
C23	0.0390 (9)	0.0470 (10)	0.0606 (11)	0.0019 (8)	0.0002 (8)	0.0063 (9)
C24	0.163 (3)	0.085 (2)	0.131 (3)	0.030 (2)	-0.063 (2)	-0.055 (2)

Geometric parameters (Å, °)

Cl1—C8	1.7609 (19)	C10—H10	0.93
Cl2—C8	1.757 (2)	C11—C12	1.379 (3)
O1—C7	1.218 (2)	C11—H11	0.93
O2—C12	1.376 (2)	C12—C13	1.372 (3)
O2—C15	1.406 (3)	C13—C14	1.383 (3)
O3—C4	1.210 (2)	С13—Н13	0.93
O4—C21	1.367 (2)	C14—H14	0.93
O4—C24	1.406 (4)	C15—H15A	0.96
N1—C7	1.354 (2)	C15—H15B	0.96
N1—C6	1.489 (2)	C15—H15C	0.96
N1—C2	1.501 (2)	C16—H16A	0.96
С2—С9	1.516 (2)	C16—H16B	0.96
C2—C3	1.550 (2)	C16—H16C	0.96
С2—Н2	0.98	С17—Н17А	0.96
C3—C4	1.512 (2)	С17—Н17В	0.96
C3—C16	1.523 (2)	С17—Н17С	0.96
С3—Н3	0.98	C18—C19	1.379 (2)
C4—C5	1.506 (2)	C18—C23	1.388 (2)
C5—C6	1.525 (2)	C19—C20	1.380 (3)
C5—C17	1.529 (2)	С19—Н19	0.93
С5—Н5	0.98	C20—C21	1.370 (3)
C6—C18	1.521 (2)	С20—Н20	0.93
С6—Н6	0.98	C21—C22	1.384 (3)
C7—O1	1.218 (2)	C22—C23	1.373 (3)
С7—С8	1.519 (3)	C22—H22	0.93

С8—Н8	0.98	С23—Н23	0.93
C9—C10	1.378 (2)	C24—H24A	0.96
C9—C14	1.388 (2)	C24—H24B	0.96
C10—C11	1.386 (2)	C24—H24C	0.96
C12—O2—C15	117.82 (19)	C13—C12—C11	119.99 (17)
C21—O4—C24	117.9 (2)	O2—C12—C11	123.9 (2)
C7—N1—C6	115.85 (14)	C12—C13—C14	120.19 (18)
C7—N1—C2	124.96 (14)	C12—C13—H13	119.9
C6—N1—C2	118.31 (12)	C14—C13—H13	119.9
N1—C2—C9	113.69 (12)	C13—C14—C9	120.84 (18)
N1—C2—C3	109.51 (12)	C13—C14—H14	119.6
C9—C2—C3	109.29 (13)	C9—C14—H14	119.6
N1—C2—H2	108.1	O2-C15-H15A	109.5
С9—С2—Н2	108.1	O2-C15-H15B	109.5
C3—C2—H2	108.1	H15A—C15—H15B	109.5
C4—C3—C16	113.00 (14)	O2—C15—H15C	109.5
C4—C3—C2	110.20 (13)	H15A—C15—H15C	109.5
C16—C3—C2	112.72 (14)	H15B—C15—H15C	109.5
С4—С3—Н3	106.8	C3—C16—H16A	109.5
С16—С3—Н3	106.8	C3—C16—H16B	109.5
С2—С3—Н3	106.8	H16A—C16—H16B	109.5
O3—C4—C5	121.55 (15)	С3—С16—Н16С	109.5
O3—C4—C3	122.41 (16)	H16A—C16—H16C	109.5
C5—C4—C3	116.02 (14)	H16B—C16—H16C	109.5
C4—C5—C6	110.96 (13)	С5—С17—Н17А	109.5
C4—C5—C17	109.19 (14)	С5—С17—Н17В	109.5
C6—C5—C17	112.17 (15)	H17A—C17—H17B	109.5
C4—C5—H5	108.1	C5—C17—H17C	109.5
С6—С5—Н5	108.1	H17A—C17—H17C	109.5
С17—С5—Н5	108.1	H17B—C17—H17C	109.5
N1—C6—C18	111.99 (13)	C19—C18—C23	116.98 (17)
N1—C6—C5	108.31 (13)	C19—C18—C6	123.20 (16)
C18—C6—C5	116.62 (14)	C23—C18—C6	119.76 (16)
N1—C6—H6	106.4	C18—C19—C20	122.15 (18)
С18—С6—Н6	106.4	C18—C19—H19	118.9
С5—С6—Н6	106.4	С20—С19—Н19	118.9
O1—C7—N1	123.20 (17)	C21—C20—C19	119.69 (19)
O1—C7—C8	118.56 (16)	C21—C20—H20	120.2
N1—C7—C8	118.22 (15)	С19—С20—Н20	120.2
C7—C8—Cl2	108.39 (14)	O4—C21—C20	125.0 (2)
C7—C8—Cl1	109.58 (13)	O4—C21—C22	115.48 (19)
Cl2—C8—Cl1	109.31 (10)	C20—C21—C22	119.56 (19)
С7—С8—Н8	109.8	C23—C22—C21	119.88 (19)
Cl2—C8—H8	109.8	С23—С22—Н22	120.1
Cl1—C8—H8	109.8	C21—C22—H22	120.1
C10—C9—C14	118.03 (16)	C22—C23—C18	121.74 (18)
C10—C9—C2	121.78 (14)	С22—С23—Н23	119.1
C14—C9—C2	120.10 (15)	C18—C23—H23	119.1
C9—C10—C11	121.56 (17)	O4—C24—H24A	109.5

С9—С10—Н10	119.2	O4—C24—H24B		109.5
C11—C10—H10	119.2	H24A—C24—H24B		109.5
C12—C11—C10	119.40 (18)	O4—C24—H24C		109.5
C12—C11—H11	120.3	H24A—C24—H24C		109.5
C10-C11-H11	120.3	H24B—C24—H24C		109.5
C13—C12—O2	116.11 (19)			
C7—N1—C2—C9	-57.4 (2)	N1-C2-C9-C10		-54.2 (2)
C6—N1—C2—C9	133.76 (14)	C3—C2—C9—C10		68.44 (19)
C7—N1—C2—C3	179.99 (15)	N1-C2-C9-C14		129.30 (15)
C6—N1—C2—C3	11.19 (18)	C3—C2—C9—C14		-108.02 (17)
N1—C2—C3—C4	-54.86 (17)	C14—C9—C10—C11		0.1 (3)
C9—C2—C3—C4	180.00 (13)	C2-C9-C10-C11		-176.45 (16)
N1—C2—C3—C16	177.88 (14)	C9—C10—C11—C12		-0.3 (3)
C9—C2—C3—C16	52.74 (18)	C15—O2—C12—C13		174.8 (2)
C16—C3—C4—O3	-10.3 (2)	C15—O2—C12—C11		-5.1 (3)
C2—C3—C4—O3	-137.45 (17)	C10—C11—C12—C13		0.0 (3)
C16—C3—C4—C5	168.53 (15)	C10—C11—C12—O2		179.92 (19)
C2—C3—C4—C5	41.42 (19)	O2-C12-C13-C14		-179.40 (18)
O3—C4—C5—C6	-165.48 (16)	C11—C12—C13—C14		0.5 (3)
C3—C4—C5—C6	15.6 (2)	C12—C13—C14—C9		-0.8 (3)
O3—C4—C5—C17	70.4 (2)	C10-C9-C14-C13		0.5 (3)
C3—C4—C5—C17	-108.51 (17)	C2-C9-C14-C13		177.04 (16)
C7—N1—C6—C18	105.44 (17)	N1-C6-C18-C19		138.12 (16)
C2-N1-C6-C18	-84.76 (17)	C5-C6-C18-C19		12.6 (2)
C7—N1—C6—C5	-124.58 (15)	N1-C6-C18-C23		-44.8 (2)
C2—N1—C6—C5	45.23 (18)	C5—C6—C18—C23		-170.39 (14)
C4—C5—C6—N1	-58.81 (17)	C23—C18—C19—C20		0.5 (3)
C17—C5—C6—N1	63.61 (17)	C6-C18-C19-C20		177.62 (16)
C4—C5—C6—C18	68.56 (18)	C18—C19—C20—C21		-0.1 (3)
C17—C5—C6—C18	-169.01 (14)	C24—O4—C21—C20		-3.5 (4)
C6—N1—C7—O1	-9.9 (3)	C24—O4—C21—C22		176.7 (3)
C2—N1—C7—O1	-178.98 (17)	C19—C20—C21—O4		-179.80 (19)
C6—N1—C7—C8	171.65 (15)	C19—C20—C21—C22		-0.1 (3)
C2—N1—C7—C8	2.6 (2)	O4—C21—C22—C23		179.61 (18)
O1—C7—C8—Cl2	-74.4 (2)	C20—C21—C22—C23		-0.1 (3)
N1—C7—C8—Cl2	104.09 (17)	C21—C22—C23—C18		0.6 (3)
O1—C7—C8—Cl1	44.8 (2)	C19—C18—C23—C22		-0.7 (3)
N1	-136.69 (15)	C6-C18-C23-C22		-177.94 (16)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C2—H2···O3 ⁱ	0.98	2.40	3.326 (2)	158

C5—H5···O1ⁱⁱ 0.98 2.59 Symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) -x, y-1/2, -z+1/2.

3.408 (2)

141

